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1 Introduction

In the exercises this week we will continue to study homotopy pushouts. For the most part
this week we will be working with strictly commutative squares and diagrams. To set some
conventions and notation we will agree that given a strictly commutative diagram

B

β
��

A
ioo

α

��

j // C

γ

��
X W

f
oo

g
// Y

(1.1)

the induced map of homotopy pushouts θ = θ(α, β, γ) : M(i, j)→M(f, g) is given by

θ(b) = α(b), θ(a, t) = (α(a), t), θ(c) = γ(c). (1.2)

This is plainly homotopic the map θ(F,G) introduced last week in the case that F,G are
the trivial homotopies, and is a little more convenient to work with.

Please complete all the exercises. There are four in total.
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2 Homotopy Colimits of 3× 3 Diagrams

Suppose given a strictly commutative diagram

A1 A0
a1oo a2 // A2

B1

α1

OO

γ1
��

B0
b1oo b2 //

α0

OO

γ0
��

B2

α2

OO

γ2
��

C1 C0
c1oo c2 // C2.

(2.1)

which we’ll refer to below as X . Taking homotopy pushouts of the rows in the diagram, the
vertical arrows induce maps

M(a1, a2)
α←−M(b1, b2)

γ
−→M(c1, c2). (2.2)

On the other hand, taking homotopy pushouts of the columns of X , the horizontal arrows
induce maps

M(α1, γ1)
d1←−M(α0, γ0)

d2−→M(α2, γ2). (2.3)

Taking homotopy pushouts of either of these two spans results in a space which we might
consider to be the homotopy colimit of the 3× 3 diagram X .

Proposition 2.1 With the notation above, the double mapping cylinder of the maps in (2.2)
is homeomorphic to the double mapping cylinder of the maps in (2.3).

Proof Both spaces are quotients of

A1 ∨ (A0 ∧ I+) ∨ A2 ∨ (B1 ∧ I+) ∨ (B0 ∧ I+ ∧ I+) ∨ (B2 ∧ I+) ∨ C1 ∨ (C0 ∧ I+) ∨ C2 (2.4)

by the same set of relations. It is tedious, but not difficult, to check that the order in which
we quotient out the necessary relations to generated each of the spaces is inconsequential.

We encourage the reader to sketch out some details to convince themselves that everything
goes through. Interpreted in another way, the statement says that there are homotopy
pushouts

M(b1, b2)

��

//M(c1, c2)

��
M(a1, a2) // T (X )

M(b1, b2)

��

//M(α2, γ2)

��
M(α1, γ1) // T (X ).

(2.5)

where
T (X ) = M(α, β) = M(d1, d2). (2.6)

The point is that given the 3× 3 diagram X , taking homotopy pushouts of the rows first or
the columns first gives rise to the same space. We’ll call the space T (X ), or more precisely
its homotopy type, the homotopy colimit of X .
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Example 2.1 The homotopy colimits of the diagrams

∗ ∗oo // ∗

∗

OO

��

Xoo //

OO

��

∗

OO

��
∗ ∗oo // ∗

X X X

X ∗oo //

OO

��

X

X X X

(2.7)

are Σ2X and ΣX, respectively. To check the second homotopy colimit you need to compute the

homotopy pushout of X
∇←− X ∨X ∇−→ X (hint: turn just one of the maps into a cofibration).

�

Example 2.2 Start with the diagram

∗ ∗oo // ∗

∗

OO

��

Woo //

OO

f
��

∗

OO

��
∗ Xoo // ∗.

(2.8)

Taking homotopy pushouts of the rows we get

ΣX
Σf←− ΣW → ∗ (2.9)

and it follows that the homotopy colimit of (2.8) is the mapping cone CΣf . On the other
hand, taking homotopy pushouts of the columns in the diagram yields

∗ ← Cf → ∗. (2.10)

Thus there is a homotopy equivalence (in this case a homeomorphism)

CΣf ' ΣCf . (2.11)

�

Exercise 2.1 Generalise the outcome of Example (2.2). Show that if

W

f
��

g // Y

k
��

X h // Z

(2.12)

is a homotopy pushout, then so is

ΣW

Σf

��

Σg // ΣY

Σk
��

ΣX Σh // ΣZ

(2.13)

The hint (if you have not been paying attention) is to construct a 3 × 3 diagram whose
homotopy colimit is both M(Σf,Σg) and ΣM(f, g), and identify this space suitably with
ΣZ. �
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3 Iterated Cofibers

Suppose given a strictly commutative diagram

W

f

��

g // Y

k
��

X
h // Z

(3.1)

which we will assume to be equipped with the trivial homotopy. Is this square a homotopy
pushout? Well, there is one simple obstruction. The square induces maps

h : Cf → Ck, k : Cg → Ch (3.2)

of cofibers, which we saw last week to be homotopy equivalences when the square is a
homotopy pushout. If these induced maps are homotopy equivalences, then their cofibers
will be contractible. This suggests in the general case that we study the cofibers of these
induces maps (3.1).

Exercise 3.1 Use the diagram
∗ ∗oo // ∗

X

OO

��

Woo //

OO

��

∗

OO

��
Z Yoo // ∗

(3.3)

to show that there is a homotopy equivalence

Ch ' Ck. (3.4)

�

The result of the exercise is quite useful, since it reduces the task of studying two spaces to
studying just one. We’ll call the common homotopy type Ch ' Ck the iterated cofiber of
the square (3.1) and denote it suggestively by C�. The following exercise shows its relevance.

Exercise 3.2 Use the diagram
X X // ∗

X

��

Woo //

OO

��

∗

OO

��
Z Yoo // ∗

(3.5)

to show that there is a cofiber sequence

M(f, g)→ Z → C�. (3.6)

�
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Thus the iterated cofiber of the square is exactly the cofiber of the canonical comparison
map M(f, g)→ Z.

With a little work we can extend the above discussion to squares which only commute
up to homotopy. Let us replace our original square with a homotopy commutative diagram

W

F⇒f
��

g // Y

k
��

X h // Z

(3.7)

which we we’ll equip with a specific choice of homotopy F so as to make sense of the
induced maps. Now factor g as a composite W ↪→ Y

'−→ Y of a cofibration g′ followed by a
homotopy equivalence. Since g′ is a cofibration we can use the HEP to replace the composite

Y
'−→ Y

k−→ Z with a homotopic map k′ : Y → Z such that k′g = hf holds strictly. The
cofibers of k and k′ are then homotopy equivalent, as are the cofibers of g and g′ (apply
Th. 3.5 from Homotopy Pushouts I ). Now repeat the previous constructions to the strictly
commutative square

W

f

��

g′ // Y

k′

��
X

h // Z.

(3.8)

Working through the details we get the following omnibus statement.

Proposition 3.1 Assume given the homotopy commutative diagram (3.7). Then a choice
of homotopy F for the square gives rise to the unlabeled maps in a homotopy commutative
diagram

W

f

��

g // Y

k

��

// Cg

��
X

h //

��

Z

��

// Ch

��
Cf // Ck // C�

(3.9)

in which each row and column is a cofiber sequence, and C� is the homotopy cofiber of the
comparison map θF : M(f, g)→ Z. If the square (3.7) commutes strictly and F is the trivial
homotopy, then (3.9) commutes strictly.

Example 3.1 Suppose maps

X
f−→ Y

g−→ Z (3.10)

are given. We apply the proposition to the strictly commutative square

X

f

��

X

gf

��
Y

g // Z

(3.11)
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with the result being a cofiber sequence of the form

Cf → Cgf → Cg. (3.12)

�

Example 3.2 In Cofiber Sequences II you were asked to compute the cohomology ring of
the space C(k) = Ck·η obtained as the cofiber of k times the Hopf map η : S3 → S2. In this
case the cofiber sequence (3.12) is

P 4(k)→ C(k)→ CP 2 (3.13)

where P 4(k) = S3 ∪k e4 is the degree k Moore space. Calculating H∗C(k) is now a simple
task of studying the long exact cohomology sequence of (3.13). �

4 Cofibers of Induced Maps

Suppose given a strictly commuting diagram

B

β

��

A
ioo

α

��

j // C

γ

��
X W

f
oo

g
// Y.

(4.1)

Taking homotopy pushouts of the rows we get a map

θ = θ(β, α, γ) : M(i, j)→M(f, g). (4.2)

This map is defined in terms of α, β, γ, and we have seen that when these maps are homotopy
equivalences, then so is θ (cf. Homotopy Pushouts I Th 3.3). What if α, β, γ are not homo-
topy equivalences? Can we measure the deviation of θ from being a homotopy equivalence
in homotopical terms? Of course the answer again is to study its cofiber.

Exercise 4.1 You’re on your own for this one. Construct a commutative 3 × 3 diagram
whose homotopy colimit is Cθ and use it to show that there are homotopy pushouts

M(i, j)

θ
��

// ∗

��
M(f, g) // Cθ

Cα

��

// Cγ

��
Cβ // Cθ.

(4.3)

�

This is exactly the result we would hope for. It clearly shows how the transfer of information
which is represented by the diagram (4.1) is seen on the level of the homotopy pushouts.

With a bit of work we can make the construction work for diagrams which only commute
up to homotopy. Of course we need to be careful to fix particular homotopies and use
them throughout. We won’t detail this, but rather only give the following slightly imprecise
statement.
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Proposition 4.1 Suppose given a homotopy commutative cube

W

α

��

!!D
DD

DD
DD

D
// Y

γ

��

  B
BB

BB
BB

B

X //

β

��

Z

δ

��

W ′

!!C
CC

CC
CC

C
// Y ′

  A
AA

AA
AA

A

X ′ // Z ′

(4.4)

in which the top and bottom faces are homotopy pushouts. Then the cofibers of the vertical
maps can assemble into a homotopy pushout square

Cα //

��

Cγ

��
Cβ // Cδ.

(4.5)

Example 4.1 Let X, Y be spaces. We define their (reduced) join X ∗ Y as the double

mapping cylinder of the two projections X
prX←−− X × Y prY−−→ Y . Thus by definition we have

a homotopy pushout

X × Y prY //

prX
��

Y

��
X // X ∗ Y.

(4.6)

Checking directly we see that the maps X → X ∗ Y and Y → X ∗ Y in the diagram are
null homotopic. Since the diagram is a homotopy pushout this implies, for instance, that
the homotopy cofiber of prX : X × Y → X is equivalent to X ∗ Y ∨ ΣY . Now consider the
strictly commutative diagram

X X ∨ YqXoo

��

qY // Y

X X × YprX
oo

prY
// Y

(4.7)

where qX , qY are the pinch maps.

Lemma 4.2 The homotopy pushout of X
qX←− X ∨ Y qY−→ Y is contractible.

Proof We check that the double mapping cylinder

M(qX , qY ) =
X ∨ (X ∨ Y ) ∧ I+ ∨ Y

∼
(4.8)

is homeomorphic to the contractible space

X ∧ I+ ∨ Y ∧ I+

X ∧ {1}+ ∨ Y ∧ {1}+

∼= CX ∨ CY. (4.9)

7



Now assume that X, Y are well-pointed. Then the inclusion X ∨Y ↪→ X×Y is a cofibration
with cofiber X ∧ Y . Thus the cofibers of the vertical maps in (4.7) give a diagram

∗ ← X ∧ Y → ∗ (4.10)

whose homotopy pushout is Σ(X ∧ Y ). On the other hand, the homotopy cofiber of the
induced map

M(qX , qY ) ' ∗ → X ∗ Y (4.11)

is equivalent to X ∗ Y since its domain is contractible. According to Proposition 4.1 these
two spaces are homotopy equivalent.

Proposition 4.3 Let X, Y be well-pointed. Then there is a homotopy equivalence

X ∗ Y ' Σ(X ∧ Y ). (4.12)

Putting this with one of our opening observations we get a useful corollary.

Proposition 4.4 The cofiber of the projection prX : X × Y → X is homotopy equivalent to
Σ(X ∧ Y ) ∨ ΣY .

Remark The join is an important space both geometrically and homotopically. You may
enjoy computing its homology using the tools given in the last example. There is similarly
an unreduced join X ∗̃Y , defined as the unreduced homotopy pushout of the projections
X

prX←−− X ×Y prY−−→ Y in the unpointed category. If X, Y are well-pointed, then the quotient
maps X ∗̃Y → X ∗ Y → Σ(X ∧ Y ) are both homotopy equivalences. �

4.1 The Mayer-Vietoris Sequence

Let
W

f

��

g // Y

k
��

X
h // Z

(4.13)

be a homotopy pushout. We make use of the following diagram

X ∗oo

��

// Y

X W
foo g // Y.

(4.14)

to induce a map of homotopy pushouts, the result being the obvious map

(h, k) : X ∨ Y → Z. (4.15)

On the other hand, according to Proposition 4.1 the cofiber of this map is the homotopy
pushout of

∗ ← W → ∗. (4.16)
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Of course this space is the suspension ΣW . Thus we can find a map δ : Z → ΣW such that

X ∨ Y (h,k)−−→ Z
δ−→ ΣW (4.17)

is a cofiber sequence. With a little work we can show that this sequence extends as

X ∨ Y (h,k)−−→ Z
δ−→ ΣW

Σf−Σg−−−−→ ΣX ∨ ΣY
Σh+Σk−−−−→ ΣZ → . . . . (4.18)

We call (4.18) the Mayer-Vietoris sequence of the homotopy pushout (4.13).
To check that the maps which we have claimed above are correct let us assume that

(4.13) is the standard homotopy pushout of f, g. Then Z = M(f, g) can be realised as the
topological pushout

W ∨W

��
in0∨in1

��
y

f∨g // X ∨ Y
(h,k)

��
W ∧ I+

//M(f, g).

(4.19)

The left-hand map is the coproduct of the inclusions into the top and bottom of the cylinder,
and this map is a cofibration. It follows that the pushout map (h, k) is a cofibration, and
in partickular that its homotopy cofiber coincides with its strict cofiber, which identifies
canonically with ΣW ∼= W ∧ I+/(W ∨W ). Thus the map δ introduced above is the obvious
collapse map

δ : M(f, g)→ ΣW (4.20)

which pinches the ends of the mapping cylinders to a point. Really this is obvious in light
of (4.14).

Now extend the vertical arrows in (4.19) downwards into strict cofiber sequences

W ∧ I+

��

//M(f, g)

��
ΣW

��

ΣW

ϕ

��
ΣW ∨ ΣW

−Σin0∨−Σin1
��

Σf∨Σg// ΣX ∨ ΣY

��
(Σh,Σk)
��

...
...

(4.21)

We see that the connecting map in which we are interested, here labelled ϕ, is the composite

ΣW → ΣW ∨ ΣW
Σf∨Σg−−−−→ ΣX ∨ ΣY (4.22)

where the first map is the connecting map in the left-hand cofiber sequence. It’s not difficult
to see that this unlabeled map is the sum

Σin1 − Σin2 : ΣW → ΣW ∨ ΣW (4.23)

so in particular
ϕ = Σf − Σg (4.24)

as claimed.
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5 A Note of Caution

In this sheet we have frequently suggested to use the cofiber of a map f : X → Y to measure
its deviation from being homotopy equivalence. This suggestion is to be taken with care, as
it is not always the case that Cf ' ∗ implies that f is an equivalence. For example consider
the following. The Poincaré homology sphere P is a closed three-dimensional manifold which
can be constructed as a quotient of S3. The fundamental group of P is a finite group of order
120 known as the binary icosahedral group. The key feature of the group for this example
is that it is perfect, meaning that it is equal to its commutator subgroup. In particular, its
abelianisation is trivial. It is also known that H̃∗P ∼= H̃∗S3.

Now let X = P \ {p} be the result of removing a point from the Poincaré homology
sphere. Then we can compute

π1X ∼= π1P , H̃∗X = 0. (5.1)

The first of these equations implies that X 6' ∗. On the other hand, since X is connected
and well-pointed, the Seifert-van Kampen Theorem implies that π1ΣX = 0, and with this
we are free to apply the Hurewicz Theorem to conclude that

π2ΣX ∼= H2ΣX ∼= H1X ∼= (π1X)Ab = 0. (5.2)

Consequently X is a simply connected space of CW homotopy type which has the homology
of a point. One implication of this is that

ΣX ' ∗. (5.3)

Proposition 5.1 There exist noncontractible spaces with contractible suspensions.

For another such space see Hatcher’s example 2.38 on pg. 142 of Algebraic Topology. This
space is the cofiber of the map ϕ : S1∨S1 → S1∨S1 which is given by ϕ = (x5y−1, x3(xy)−2)
in terms of the canonical generators x = in1, y = in2 ∈ π1(S1 ∨ S1).

Back to the point, if X is as in 5.1, then

X → ∗ → ∗ (5.4)

is a homotopy cofiber sequence, but X → ∗ is not a homotopy equivalence. Thus we have
an example of a map which is not a homotopy equivalence, but whose mapping cone is
contractible. We also have an example of a homotopy pushout square

X //

f

��

∗
k
��

∗ // ∗
(5.5)

in which k is a homotopy equivalence, but f is not (compare Homotopy Pushouts I Pr 4.1).
The example we will end with, though, is that of the commutative square

∗ //

��

∗

��
X // ∗.

(5.6)

This square is not a homotopy pushout, but its iterated cofiber is contractible.
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